Abstract
This paper introduces a noncontact, low-cost, and reliable inductive sensor for angular displacement measurement. It is suitable to work in harsh industrial environments. The sensor has simple structure consisting of three key parts: a ferromagnetic stator, which is a pure plane; a ferromagnetic rotor, which has face slots; and four layers of planar copper coils, including primary and secondary coils. Primary coils are supplied with two orthogonal 4000-Hz ac, and secondary coils output a signal whose phase is proportional to angular displacement. Primary coils are designed with sinusoidal shape, so that magnetic field between the stator and rotor has approximately sinusoidal distribution, and finally linearity between the phase variation of output signal and angular displacement is well helped by this design. The structure and working principles of the sensor are explained in detail. Moreover, a sensor model was simulated to verify the feasibility of the sensor working principles and a sensor prototype was designed for actual experiment. At last actual experiment results are given and analyzed, showing that the sensor prototype has achieved accuracy better than ±12 arcsec in the range of 0°-360°, and this kind of sensor may have a better performance by improving the layout of primary coils and front-end signal-process circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.