Abstract

AbstractNested datatypes are families of datatypes that are indexed over all types such that the constructors may relate different family members (unlike the homogeneous lists). Moreover, the argument types of the constructors refer to indices given by expressions in which the family name may occur. Especially in this case of true nesting, termination of functions that traverse these data structures is far from being obvious. A joint paper with A. Abel and T. Uustalu (Theor. Comput. Sci., 333 (1–2), 2005, pp. 3–66) proposed iteration schemes that guarantee termination not by structural requirements but just by polymorphic typing. They are generic in the sense that no specific syntactic form of the underlying datatype “functor” is required. However, there was no induction principle for the verification of the programs thus obtained, although they are well known in the usual model of initial algebras on endofunctor categories. The new contribution is a representation of nested datatypes in intensional type theory (more specifically, in the calculus of inductive constructions) that is still generic and covers true nesting, guarantees termination of all expressible programs, and has an induction principle that allows to prove functoriality of monotonicity witnesses (maps for nested datatypes) and naturality properties of iteratively defined polymorphic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.