Abstract

Mitosis is a fundamental process of eukaryotic cell proliferation. However, the molecular mechanisms underlying mitosis remain poorly understood in plants partly because of the lack of an appropriate model cell system in which loss-of-function analyses can be easily combined with high-resolution microscopy. Here, we developed an inducible RNA interference (RNAi) system and three-dimensional time-lapse confocal microscopy in the moss Physcomitrella patens that allowed in-depth phenotype characterization of the moss genes essential for cell division. We applied this technique to two microtubule regulators, augmin and γ-tubulin complexes, whose mitotic roles remain obscure in plant cells. Live imaging of caulonemal cells showed that they proceed through mitosis with continual generation and self-organization of acentrosomal microtubules. We demonstrated that augmin plays an important role in γ-tubulin localization and microtubule generation from prometaphase to cytokinesis. Most evidently, microtubule formation in phragmoplasts was severely compromised after RNAi knockdown of an augmin subunit, leading to incomplete expansion of phragmoplasts and cytokinesis failure. Knockdown of the γ-tubulin complex affected microtubule formation throughout mitosis. We conclude that postanaphase microtubule generation is predominantly stimulated by the augmin/γ-tubulin machinery in moss and further propose that this RNAi system serves as a powerful tool to dissect the molecular mechanisms underlying mitosis in land plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.