Abstract

Many organisms have evolved inducible defences in response to spatial and temporal variability in predation risk. These defences are assumed to incur large costs to prey; however, few studies have investigated the mechanisms and costs underlying these adaptive responses. I examined the proximate cause of predator-induced shell thickening in a marine snail (Nucella lamellosa) and tested whether induced thickening leads to an increase in structural strength. Results indicate that although predators (crabs) induce thicker shells, the response is a passive by-product of reduced feeding and somatic growth rather than an active physiological response to predation risk. Physical tests indicate that although the shells of predator-induced snails are significantly stronger, the increase in performance is no different than that of snails with limited access to food. Increased shell strength is attributable to an increase in the energetically inexpensive microstructural layer rather than to material property changes in the shell. This mechanism suggests that predator-induced shell defences may be neither energetically nor developmentally costly. Positive correlations between antipredator behaviour and morphological defences may explain commonly observed associations between growth reduction and defence production in other systems and could have implications for the evolutionary potential of these plastic traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.