Abstract
Increasing evidence suggests that overt oxidative stress within the retina plays an important role in the progression of age-related retinal decline, and in particular, in the disease age-related macular degeneration (AMD). Nuclear factor erythroid 2-like 2 (Nrf2) is a master transcription factor that upregulates numerous of antioxidant/detoxification genes. Nrf2−/− mice develop progressive retinal degeneration that includes the formation of drusen-like deposits, lipofuscin, and sub-retinal pigment epithelium (RPE) deposition of inflammatory proteins. Furthermore, strategies that promote Nrf2 activation have shown promise for the treatment of cone/rod dystrophies and other forms of retinal degeneration. Herein we explored whether utilizing a small molecule-inducible version of Nrf2 confers additional protection against oxidative stresses when compared to a constitutively expressed version of Nrf2. Stable populations of human ARPE-19 cells were generated that express either constitutive FLAG-tagged (FT) Nrf2 (FT cNrf2) or doxycycline (dox)-inducible FT Nrf2 (FT iNrf2) at low levels (∼4.5 fold vs. endogenous). Expression of either FT cNRF2 or FT iNrf2 upregulated canonical antioxidant genes (e.g., NQO1, GCLC). Both FT cNrf2 and FT iNrf2 ARPE-19 cells were protected from cigarette smoke extract-induced nitric oxide generation to similar extents. However, only FT iNrf2 cells demonstrated enhanced resistance to doxorubicin and cumene hydroperoxide-mediated increases in mitochondrial superoxide and lipid peroxidation, respectively, and did so in a dox-dependent manner. These results suggest that therapeutic approaches which conditionally control Nrf2 activity may provide additional protection against acute oxidative stresses when compared to constitutively expressed Nrf2 strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.