Abstract

As an indispensable type of information, location data are used in various industries. Ultrawideband (UWB) technology has been used for indoor location estimation due to its excellent ranging performance. However, the accuracy of the location estimation results is heavily affected by the deployment of base stations; in particular, the base station deployment space is limited in certain scenarios. In underground mines, base stations must be placed on the roof to ensure signal coverage, which is almost coplanar in nature. Existing indoor positioning solutions suffer from both difficulties in the correct convergence of results and poor positioning accuracy under coplanar base-station conditions. To correctly estimate position in coplanar base-station scenarios, this paper proposes a novel iterative method. Based on the Newton iteration method, a selection range for the initial value and iterative convergence control conditions were derived to improve the convergence performance of the algorithm. In this paper, we mathematically analyze the impact of the localization solution for coplanar base stations and derive the expression for the localization accuracy performance. The proposed method demonstrated a positioning accuracy of 5 cm in the experimental campaign for the comparative analysis, with the multi-epoch observation results being stable within 10 cm. Furthermore, it was found that, when base stations are coplanar, the test point accuracy can be improved by an average of 63.54% compared to the conventional positioning algorithm. In the base-station coplanar deployment scenario, the upper bound of the CDF convergence in the proposed method outperformed the conventional positioning algorithm by about 30%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.