Abstract

The ability to classify rooms in a home is one of many attributes that are desired for social robots. In this paper, we address the problem of indoor room classification via several convolutional neural network (CNN) architectures, i.e., VGG16, VGG19, & Inception V3. The main objective is to recognize five indoor classes (bathroom, bedroom, dining room, kitchen, and living room) from a Places dataset. We considered 11600 images per class and subsequently fine-tuned the networks. The simulation studies suggest that cleaning the disparate data produced much better results in all the examined CNN architectures. We report that VGG16 & VGG19 fine-tuned models with training on all layers produced the best validation accuracy, with 93.29% and 93.61% on clean data, respectively. We also propose and examine a combination model of CNN and a multi-binary classifier referred to as error correcting output code (ECOC) with the clean data. The highest validation accuracy of 15 binary classifiers reached up to 98.5%, where the average of all classifiers was 95.37%. CNN and CNN-ECOC, and an alternative form called CNN-ECOC Regression, were evaluated in real-time implementation on a NAO humanoid robot. The results show the superiority of the combination model of CNN and ECOC over the conventional CNN. The implications and the challenges of real-time experiments are also discussed in the paper.

Highlights

  • The prospect of a social robot in every home may be realized within the two decades

  • The problem of indoor navigation can be addressed by different approaches; here, we propose a convolutional neural network (CNN) solution for real time implementation for such social robots

  • This paper focused on addressing the room classification problem for social robots

Read more

Summary

Introduction

The prospect of a social robot in every home may be realized within the two decades. The open research objectives are diverse and include, but are not limited to, emotion recognition, perception, pattern recognition (face, object, scene, and voice), and navigation. In order to accomplish such tasks, it is essential that the robot seamlessly recognizes its own location inside the home—similar to humans who are effortlessly aware of their whereabouts at any instant, e.g., kitchen or living room. This knowledge is a pretext for many indoor navigation scenarios, and facilitates the robot’s movement in the house. The convolutional neural network (CNN) [4,5]

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call