Abstract

Indoor navigation technology is needed to support seamless mobility for the visually impaired. A small portable personal navigation device that provides current position, useful contextual wayfinding information about the indoor environment and directions to a destination would greatly improve access and independence for people with low vision. This paper describes the construction of such a device which utilizes a commercial Ultra-Wideband (UWB) asset tracking system to support real-time location and navigation information. Human trials were conducted to assess the efficacy of the system by comparing target-finding performance between blindfolded subjects using the navigation system for real-time guidance, and blindfolded subjects who only received speech information about their local surrounds but no route guidance information (similar to that available from a long cane or guide dog). A normal vision control condition was also run. The time and distance traveled was measured in each trial and a point-back test was performed after goal completion to assess cognitive map development. Statistically significant differences were observed between the three conditions in time and distance traveled; with the navigation system and the visual condition yielding the best results, and the navigation system dramatically outperforming the non-guided condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call