Abstract
Aimed at the problem of large localization error based on indoor received signal strength indication (RSSI), a RBF neural network (RBFNN) localization algorithm is proposed optimized by improved particle swarm optimization (PSO). Combined with resource allocation network (RAN), the number of nodes in hidden layer increase dynamically to determine the center of RBFNN, the number of nodes in hidden layer and spread constant. The inertia weight of PSO is improved to advance the global search ability of PSO and optimize the output weight of RBFNN. Finally, the optimized RBFNN is used for indoor RSSI positioning. Simulation and experimental results show that the improved localization algorithm has higher positioning accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: DEStech Transactions on Computer Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.