Abstract
AbstractThis work presents the pH sensing ability of a fluorescent indolin‐3‐imine derivative. Protonation of the weakly basic imine (pKa=8.3 of its conjugate acid) results in a significant red‐shift of the absorption band. The fluorophore acts as a photobase, with a basicity increase of approximately 6 units upon photoexcitation. This behavior promotes excited state proton transfer from weak acids such as protic solvents. The characteristics of the fluorophore enable sensing of water fractions in organic solvents and differentiation between methanol, ethanol, and longer chain alcohols. Initial cell studies indicated the future potential of indolin‐3‐imines as fluorophores for bioimaging applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.