Abstract
BackgroundCognitive impairment (CI) is important for the prognosis of Parkinson's disease (PD). Early prediction whether and when cognitive decline from normal cognition (NC) will occur is crucial for preventing or delaying the progression timely. The current study aimed to provide a personalized risk assessment of CI by using baseline information and establishing a multi-predictor nomogram. Methods108 patients with PD were collected from the Parkinson's Progression Markers Initiative (PPMI), of whom 58 had progressed to CI and 50 remained NC during 5-year follow up. Radiomics signatures were obtained by using least absolute shrinkage and selection operator (LASSO) Cox regression algorithm. Clinical factors and laboratory biomarkers were selected by multivariate Cox regression analysis. The combined model of radiomics signatures and clinical risk factors was developed by a multivariate Cox proportional hazard model. A multi-predictor nomogram derived from the combined model was established for individualized estimation of time to progress (TTP) of CI. We analyzed the risk of two subgroups of the combined model by Kaplan-Meier (KM) analysis. ResultsThe combined model showed the best performance with a C-index of 0.988 and 0.926 in the training and validation datasets. KM analysis verified significant TTP of CI (P<0.05) between two subgroups stratified by the cutoff value (−0.058). ConclusionThe combined model and its multi-predictor nomogram can be used to perfectly and individually predict the TTP of CI for patients with PD. Stratification of PD will benefit its timely clinical intervention and the delay and prevention of CI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.