Abstract

BackgroundTumor spread through air spaces (STAS) has been shown to adversely affect the prognosis of lung cancer. The correlation between clinicopathological and genetic features and STAS remains unclear.MethodWe retrospectively reviewed 3075 NSCLC patients between2017-2019. We evaluated the relationship between STAS and patients’ clinicopathological and molecular features. The chi-square test was performed to compare categorical variables. Univariate analysis and multivariate logistic regression analysis were performed to investigate the association of clinical factors with STAS. A nomogram was formulated to predict the presence of STAS.ResultsSTAS was identified in 617 of 3075 patients (20.07%). STAS was significantly related to sex (p < 0.001), smoking (p < 0.001), CEA (p < 0.001), differentiation (p < 0.001), histopathological type (p < 0.001), lymphatic vessel invasion (p < 0.001), pleural invasion (p < 0.001), T stage (p < 0.001), N stage (p < 0.001), M stage (p < 0.001), and TNM stage (p < 0.001). STAS was frequently found in tumors with wild-type EGFR (p < 0.001), KRAS mutations (p < 0.001), ALK rearrangements (p < 0.001) or ROS1 rearrangements (p < 0.001). For programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1), STAS was associated with PD-L1 expression level in tumor cells (p < 0.001) or stromal cells (p < 0.001), while PD-1 only in stromal cells (p < 0.001). Multivariable analyses demonstrated significant correlations between STAS and CEA level (p < 0.001), pathological grade (p < 0.001), lymphatic vessel invasion (p < 0.001), pleural invasion (p = 0.001), and TNM stage (p = 0.002). A nomogram was formulated based on the results of the multivariable analysis.ConclusionsTumor STAS was associated with several invasive clinicopathological features. A nomogram was established to predict the presence of STAS in patients with NSCLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call