Abstract

One key piece of information missing from high redshift galaxy surveys is the galaxies' cold gas contents. We present a new method to indirectly determine cold gas surface densities and integrated gas masses from galaxy star formation rates and to separate the atomic and molecular gas components. Our predicted molecular and total gas surface densities and integrated masses are in very good agreement with direct measurements quoted in the literature for low and high-z galaxies. We apply this method to predict the gas content for a sample of $\sim 57000$ galaxies in the COSMOS field at $0.5 \leq z \leq 2.0$, selected to have $I_{AB} < 24$ mag. This approach allows us to investigate in detail the redshift evolution of galaxy cold and molecular gas content versus stellar mass and to provide fitting formulae for galaxy gas fractions. We find a clear trend between galaxy gas fraction, molecular gas fraction and stellar mass with redshift, suggesting that massive galaxies consume and/or expel their gas at higher redshift than less massive objects and have lower fractions of their gas in molecular form. The characteristic stellar mass separating gas- from stellar-dominated galaxies decreases with time. This indicates that massive galaxies reach a gas-poor state earlier than less massive objects. These trends can be considered to be another manifestation of downsizing in star formation activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.