Abstract

Computing sound field from an arbitrary radiator is of interest in acoustics, with many significant applications, one that includes the design of classical projectors and the noise prediction of underwater vehicle. To overcome the non-uniqueness of solution at eigenfrequencies in the boundary integral equation method for structural acoustic radiation, wave superposition method is introduced to study the acoustics. In this paper, the theoretical backgrounds to the direct boundary element method and the wave superposition method are presented. The wave superposition method does not solve the Kirchoff-Helmholtz integral equation directly. In the approach a lumped parameter model is estabiled from spatially averaged quantities, and the numerical method is implemented by using the acoustic field from a series of virtual sources which are collocated near the boundary surface to replace the acoustic field of the radiator. Then the sound field over the of a pulsating sphere is calculated. Finally, comparison between the analytical and numerical results is given, and the speed of solution is investigated. The results show that the agreement between the results from the above numerical methods is excellent. The wave superposition method requires fewer elements and hence is faster, which do not need as high a mesh density as traditionally associated with BEM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call