Abstract

In this paper a novel method for adaptive predictive control of a launch vehicle is presented. Nonlinear dynamics of these systems cause challenging problems in controller design. Linearizing the system in diverse operating points and designing appropriate controllers for these systems is an interesting idea in industry. The outcome is a linear time varying (LTV) system. Dealing with time varying dynamics is a challenging issue in control theory. Adaptive control approach presents a well-established methodology to address the subject of flight control systems. This paper proposes an indirect adaptive predictive idea to control the pitch channel dynamics of a launch vehicle. For this purpose, a robust estimator and a robustly-tuned generalized predictive controller are incorporated to present a robust adaptive scheme. The proposed technique is applied to pitch channel model of Vanguard missile. A set of test scenarios is conducted to explore the performance of proposed controller in various conditions. The results demonstrate the fidelity of this method to yield high performance in the presence of time-varying parameters under various un-modeled dynamics and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.