Abstract
A new multivariate dispersion ordering based on the Hausdorff distance between nonempty convex compact sets is proposed. This dispersion ordering depends on an index, whose purpose is to blur for each random vector the ball centered at its expected value, and with a radius equal to the index. So, on the basis of such an index, we consider a random set associated with each random vector and dispersion comparisons are established by means of the Hausdorff distance associated with the random sets. Different properties of the new dispersion ordering are stated as well as some characterization theorems. Possible relationships with other dispersion orderings are also studied. Finally, several examples are developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.