Abstract

This paper proposes a new novel method for similarity search that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. Previous methods for processing similarity search that supports time warping fail to employ multi-dimensional indexes without false dismissal since the time warping distance does not satisfy the triangular inequality. Our primary goal is to innovate on search performance without permitting any false dismissal. To attain this goal, we devise a new distance function D/sub tw-lb/ that consistently underestimates the time warping distance and also satisfies the triangular inequality D/sub tw-lb/ uses a 4-tuple feature vector that is extracted from each sequence and is invariant to time warping. For efficient processing of similarity search, we employ a multi-dimensional index that uses the 4-tuple feature vector as indexing attributes and D/sub tw-lb/ as a distance function. The extensive experimental results reveal that our method achieves significant speedup up to 43 times with real-world S&P 500 stock data and up to 720 times with very large synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.