Abstract

Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controllability of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a “mechanical controllability index” (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal Al nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline Al nanopillars of similar size for which the stress-strain curve is smoother.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.