Abstract

BackgroundSince the first description of lumpy skin disease virus (LSDV) in Africa in the 1920’s, it has brazenly spread beyond Africa into the Middle East, Europe and most recently Asia. In 2017 the first atypical LSDV recombinant strain was reported in Russia, composed of both a live-attenuated Neethling vaccine strain and Kenyan vaccine strain. An increase in LSDV research enabled a public release of numerous full genome sequences of unique recombinant LSDV strains from Kazakhstan, Russia, China and Vietnam. Prior to the recombinant strain first described in China in 2019, every new recombinant strain was genetically unique and each of these recombinants clustered in a monophyletic lineage. In this work, we provide the complete genome sequences of two novel recombinant strains of LSDV from Russia and attempt to gain more insight into genomic composition of all the recombinant strains currently available. This analysis will provide new insight into the global molecular epidemiology of LSDV.ResultsBy sequencing and analyzing two novel recombinant strains Khabarovsk/2020 and Tomsk/2020, this study investigates the differences and similarities of all five the available recombinant LSDV lineages from different countries based on the SNPs inherited from the aforementioned parental strains. A total of seven recombinant strains: LSDV/Russia/Saratov/2017, LSDV/Russia/Udmurtya/2019, LSDV/KZ-Kostanay/Kazakhstan/2018, LSDV/Russia/Tyumen/2019, LSDV/GD01/China/2020 Khabarovsk/2020 and Tomsk/2020 were examined. It was observed that strains isolated prior to 2020 were composed of unique combinations of open reading frames, whilst from 2020 onwards all circulating strains in Russia and South-Eastern Asia belonged to a single lineage radiating out in the region. The first representative of this lineage is LSDV/GD01/China/2020. Interestingly, the other four unique recombinant strains as well as the newly established lineage, exhibit consistent patterns of targeted selection pointing to regions constantly selected for during the recombination-driven processes.ConclusionThis study highlights the inexplicable emergence of novel recombinant strains to be unique introductions of sibling viruses, with the most recent recombinant lineage establishing as the dominant strain across the south eastern Asian countries as evidenced by full genome sequence data. Overall, these findings indicate that LSDVs are subjected to accelerated evolutionary changes due to recombination in the face of homologous live attenuated vaccines as well as the slow genetic drift commonly observed in capripoxviruses curculatign in the field with hardly any genetic changes over decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call