Abstract

This paper proposes a new framework for measuring sternal cardio-mechanical signals from moving subjects using multiple sensors. An array of inertial measurement units are attached to the chest wall of subjects to measure the seismocardiogram (SCG) from accelerometers and the gyrocardiogram (GCG) from gyroscopes. A digital signal processing method based on constrained independent component analysis is applied to extract the desired cardio-mechanical signals from the mixture of vibration observations. Electrocardiogram and photoplethysmography modalities are evaluated as reference sources for the constrained independent component analysis algorithm. Experimental studies with 14 young, healthy adult subjects demonstrate the feasibility of extracting seismo- and gyrocardiogram signals from walking and jogging subjects, with speeds of 3.0 mi/h and 4.6 mi/h, respectively. Beat-to-beat and ensemble-averaged features are extracted from the outputs of the algorithm. The beat-to-beat cardiac interval results demonstrate average detection rates of 91.44% during walking and 86.06% during jogging from SCG, and 87.32% during walking and 76.30% during jogging from GCG. The ensemble-averaged pre-ejection period (PEP) calculation results attained overall squared correlation coefficients of 0.9048 from SCG and 0.8350 from GCG with reference PEP from impedance cardiogram. Our results indicate that the proposed framework can improve the motion tolerance of cardio-mechanical signals in moving subjects. The effective number of recordings during day time could be potentially increased by the proposed framework, which will push forward the implementation of cardio-mechanical monitoring devices in mobile healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.