Abstract

We propose an independence test for random variables valued into metric spaces by using a test statistic obtained from appropriately centering and rescaling the squared Hilbert–Schmidt norm of the usual empirical estimator of normalized cross-covariance operator. We then get asymptotic normality of this statistic under independence hypothesis, so leading to a new test for independence of functional random variables. A simulation study that allows to compare the proposed test to existing ones is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.