Abstract
Cornea is a load-bearing tissue whose mechanical and viscoelastic characteristics are not well understood, due to the challenge associated with most of the measurements. A novel indentation technique has been developed for mechanical characterization of human and porcine corneal tissue, using a tailored depth-sensing microindentation instrument. During indentation, the corneas were suspended by clamping the edges of the cornea, thus allowing depth-sensing measurement free from the complication of the backing substrate. The deformation displacement and the amount of force applied by the indenter were used to obtain hysteresis and stress relaxation data for both human and porcine corneas. Optical coherence tomography was used to measure the thickness of the cornea. Simple theoretical analyses have been undertaken to explain the loading-unloading and the stress relaxation data. The effect of swelling on the mechanical properties of the cornea was also examined. Porcine corneas appeared to be less stiff and to demonstrate more linear response than human corneas under loading. More importantly, it is shown that swelling reduced the strength of the corneas. Our results demonstrate that this new indentation system can be used to characterize the mechanical and viscoelastic properties of corneas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.