Abstract

The mechanical properties of human foot tissue in vivo as well as discomfort and pain thresholds are important for various applications. In this study, an apparatus for measuring the discomfort and pain thresholds and the mechanical properties of human tissues is presented. The apparatus employs a stepper motor that controls the indentation speed, as well as a load cell and potentiometer that determine the corresponding reaction force and tissue deformation (displacement), respectively. A LabVIEW program (LabVIEW 8, National Instruments Corporation; Austin, Texas) was developed to control the indentation via a data acquisition card. The apparatus can accommodate indentor displacements up to 35 mm and can impart forces up to 150 N at a controlled indentation speed in the range of 0 to 10 mm/s. Tests showed that the displacement measurement error is <0.17 mm in the nominal range (0.5% in the full scale) and the measurement error of force is <1.6 N in the nominal range (1.1% in the full scale). Experimental results indicate that the apparatus is reliable and flexible for measuring the mechanical properties of foot tissue in vivo in conjunction with pain and discomfort thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.