Abstract
Seed dispersal is an important moment in the life cycle of a plant species. In Arabidopsis thaliana, it is dependent on transcription factor INDEHISCENT (IND)-mediated specification of a separation layer in the dehiscence zone found in the margin between the valves (carpel walls) and the central replum of the developing fruit. It was proposed that IND specifies the separation layer by inducing a local auxin minimum at late stages of fruit development. Here we show that morphological differences between the ind mutant and wild-type fruit already arise at early stages of fruit development, coinciding with strong IND expression in the valve margin. We show that IND-reduced PIN-FORMED3 (PIN3) auxin efflux carrier abundance leads to an increased auxin response in the valve margin during early fruit development, and that the concomitant cell divisions that form the dehiscence zone are lacking in ind mutant fruit. Moreover, IND promoter-driven ectopic expression of the AGC kinases PINOID (PID) and WAG2 induced indehiscence by expelling auxin from the valve margin at stages 14–16 of fruit development through increased PIN3 abundance. Our results show that IND, besides its role at late stages of Arabidopsis fruit development, functions at early stages to facilitate the auxin-triggered cell divisions that form the dehiscence zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.