Abstract
The strictly contractive Peaceman–Rachford splitting method (SCPRSM) has received a tremendous amount of attention for solving linearly constrained separable convex optimization problems. In this paper, we propose an indefinite proximal SCPRSM with substitution procedure (abbreviated as PPRSM-S) to improve numerical results. The prediction step takes a proximal SCPRSM cycle to update the variable blocks, then the correction step corrects the output slightly by computing a combination of the prediction step and the previous iteration. We derive the global convergence of the proposed method and analyze the convergence rate results under much mild conditions. Some experimental results on LASSO and total variation-based denoising problems demonstrate the efficiency of the substitution step and the indefinite proximal term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.