Abstract

The strategic and logical development of the third component (guest materials) plays a pivotal and intricate role in improving the efficiency and stability of ternary organic solar cells (OSCs). In this study, a novel guest material with a wide bandgap, named IDTR, is designed, synthesized, and incorporated as the third component. IDTR exhibits complementary absorption characteristics and cascade band alignment with the PM6:Y6 binary system. Morphological analysis reveals that the introduction of IDTR results in strong crystallinity, good miscibility, and proper vertical phase distribution, thereby realizing heightened and balanced charge transport behavior. Remarkably, the novel ternary OSCs have exhibited a significant enhancement in photovoltaic performance. Consequently, open-circuit voltage (VOC), short-circuit current (JSC), and fill factor (FF) have all witnessed substantial improvements with a remarkable power conversion efficiency (PCE) of 18.94% when L8-BO replaced Y6. Beyond the pronounced improvement in photovoltaic performance, superior device stability with a T80 approaching 400h is successfully achieved. This achievement is attributed to the synergistic interplay of IDTR, providing robust support for the overall enhancement of performance. These findings offer crucial guidance and reference for the design and development of efficient and stable OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call