Abstract

In this paper, we describe how to build an incremental structured part model for object recognition. The proposed method explores both global structural information and multiple local features of objects for object model characterization. It use part models to represent structure nodes, which encode the local information of an object. The parts are learned through a segmentation and clustering process, and are used to form the part models in terms of multiple feature fusion and multi-class SVMs. The structured part model is then constructed by correlating different parts through a deformable configuration. Furthermore, we present an incremental learning strategy, which learns a part model by using only a small number of training samples. Annotated images with high entropies are used to update the trained model. The advantage of our method is that it captures the inherent connections of the semantic parts of objects and characterizes the structural relationships between them. The proposed approach is evaluated on two datasets and demonstrates advantages over several state-of-the-art part-based methods in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.