Abstract
The broad learning system (BLS) has recently been applied in numerous fields. However, it is mainly a supervised learning system and thus not suitable for specific practical applications with a mixture of labeled and unlabeled data. Despite a manifold regularization-based semi-supervised BLS, its performance still requires improvement, because its assumption is not always applicable. Therefore, this article proposes an incremental-self-training-guided semi-supervised BLS (ISTSS-BLS). Distinctive to traditional self-training, where all unlabeled data are labeled simultaneously, incremental self-training (IST) obtains unlabeled data incrementally from an established sorted list based on the distance between the data and their cluster center. During iterative learning, a small portion of labeled data is first used to train BLS. The system recursively self-updates its structure and meta-parameters using: 1) the double-restricted mechanism and 2) the dynamic neuron-incremental mechanism. The double-restricted mechanism is beneficial to preventing the introduction of incorrect pseudo-labeled samples, and the dynamic neuron-incremental mechanism guides the self-updating of the network structure effectively based on the training accuracy of the labeled data. These strategies guarantee a parsimonious model during the update. Besides, a novel metric, the accuracy-time ratio (A/T), is proposed to evaluate the model's performance comprehensively regarding time and accuracy. In experimental verifications, ISTSS-BLS performs outstandingly on 11 datasets. Specifically, the IST is compared with the traditional one on three scales data, saving up to 52.02% learning time. In addition, ISTSS-BLS is compared with different state-of-the-art alternatives, and all results indicate that it possesses significant advantages in performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.