Abstract

This paper presents a framework for incremental neural learning (INL) that allows a base neural learning system to incrementally learn new knowledge from only new data without forgetting the existing knowledge. Upon subsequent encounters of new data examples, INL utilizes prior knowledge to direct its incremental learning. A number of critical issues are addressed including when to make the system learn new knowledge, how to learn new knowledge without forgetting existing knowledge, how to perform inference using both the existing and the newly learnt knowledge, and how to detect and deal with aged learnt systems. To validate the proposed INL framework, we use backpropagation (BP) as a base learner and a multi-layer neural network as a base intelligent system. INL has several advantages over existing incremental algorithms: it can be applied to a broad range of neural network systems beyond the BP trained neural networks; it retains the existing neural network structures and weights even during incremental learning; the neural network committees generated by INL do not interact with one another and each sees the same inputs and error signals at the same time; this limited communication makes the INL architecture attractive for parallel implementation. We have applied INL to two vehicle fault diagnostics problems: end-of-line test in auto assembly plants and onboard vehicle misfire detection. These experimental results demonstrate that the INL framework has the capability to successfully perform incremental learning from unbalanced and noisy data. In order to show the general capabilities of INL, we also applied INL to three general machine learning benchmark data sets. The INL systems showed good generalization capabilities in comparison with other well known machine learning algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.