Abstract

The human respiratory network is a vital system that provides oxygen supply and nourishment to the whole body. Pulmonary diseases can cause severe respiratory problems, leading to sudden death if not treated timely. Many researchers have utilized deep learning systems (in both transfer learning and fine-tuning modes) to diagnose pulmonary disorders using chest X-rays (CXRs). However, such systems require exhaustive training efforts on large-scale (and well-annotated) data to effectively diagnose chest abnormalities (at the inference stage). Furthermore, procuring such large-scale data (in a clinical setting) is often infeasible and impractical, especially for rare diseases. With the recent advances in incremental learning, researchers have periodically tuned deep neural networks to learn different classification tasks with few training examples. Although, such systems can resist catastrophic forgetting, they treat the knowledge representations (which the network learns periodically) independently of each other, and this limits their classification performance. Also, to the best of our knowledge, there is no incremental learning-driven image diagnostic framework (to date) that is specifically designed to screen pulmonary disorders from the CXRs. To address this, we present a novel framework that can learn to screen different chest abnormalities incrementally (via few-shot training). In addition to this, the proposed framework is penalized through an incremental learning loss function that infers Bayesian theory to recognize structural and semantic inter-dependencies between incrementally learned knowledge representations to diagnose the pulmonary diseases effectively (at the inference stage), regardless of the scanner specifications. We tested the proposed framework on five public CXR datasets containing different chest abnormalities, where it achieved an accuracy of 0.8405 and the F1 score of 0.8303, outperforming various state-of-the-art incremental learning schemes. It also achieved a highly competitive performance compared to the conventional fine-tuning (transfer learning) approaches while significantly reducing the training and computational requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call