Abstract

A constructive learning algorithm is described that builds a feedforward neural network with an optimal number of hidden units to balance convergence and generalization. The method starts with a small training set and a small network, and expands the training set incrementally after training. If the training does not converge, the network grows incrementally to increase its learning capacity. This process, called selective learning with flexible neural architectures (SELF), results in a construction of an optimal size network for learning all the given data using only a minimal subset of them. The author shows that the network size optimization combined with active example selection generalizes significantly better and converges faster than conventional methods.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.