Abstract

The level of cis-unsaturated fatty acids in phosphatidylglycerol (PG) from rice leaves was genetically altered from 19.3% in the wild-type to 29.4 and 32.0% in T1 plants segregated with cDNAs for glycerol-3-phosphate acyltransferase of chloroplasts (GPAT; EC 2.3.1.15) from Arabidopsis (+AGPAT plant) and spinach (+SGPAT plant), respectively; and to 21.4% in a non-transformant segregated from +SGPAT plants (-SGPAT plant). In all these plants, O2 evolution from leaves was similar at 25 degrees C and was impaired to a similar extent at 5 and 11 degrees C. However, in parallel with the levels of cis-unsaturated fatty acids in PG, +AGPAT and +SGPAT plants showed less impaired rates of O(2) evolution from leaves than the wild-type and -SGPAT plants at 14 and 17 degrees C. In agreement with this, the fresh weight of 14-day-old seedlings increased to 571 + or - 18, 591 + or - 23, 687 + or - 32 and 705 + or - 31 mg in the wild-type, -SGPAT, +AGPAT and +SGPAT plants, respectively, after 6 weeks at 17/14 degrees C (day/night). These results demonstrate the practical importance of the present technology with GPAT in improvement of the chilling sensitivity of crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.