Abstract

Apoptosis-inducing factor (AIF), a flavoprotein with NADH oxidase activity anchored to the mitochondrial inner membrane, is known to be involved in complex I maintenance. During apoptosis, AIF can be released from mitochondria and translocate to the nucleus, where it participates in chromatin condensation and large-scale DNA fragmentation. The mechanism of AIF release is not fully understood. Here, we show that a prolonged ( approximately 10 min) increase in intracellular Ca(2+) level is a prerequisite step for AIF processing and release during cell death. In contrast, a transient ATP-induced Ca(2+) increase, followed by rapid normalization of the Ca(2+) level, was not sufficient to trigger the proteolysis of AIF. Hence, import of extracellular Ca(2+) into staurosporine-treated cells caused the activation of a calpain, located in the intermembrane space of mitochondria. The activated calpain, in turn, cleaved membrane-bound AIF, and the soluble fragment was released from the mitochondria upon outer membrane permeabilization through Bax/Bak-mediated pores or by the induction of Ca(2+)-dependent mitochondrial permeability transition. Inhibition of calpain, or chelation of Ca(2+), but not the suppression of caspase activity, prevented processing and release of AIF. Combined, these results provide novel insights into the mechanism of AIF release during cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call