Abstract
We prove the global existence of an incomplete, continuous-time finite-agent Radner equilibrium in which exponential agents optimise their expected utility over both running consumption and terminal wealth. The market consists of a traded annuity, and along with unspanned income, the market is incomplete. Set in a Brownian framework, the income is driven by a multidimensional diffusion and in particular includes mean-reverting dynamics. The equilibrium is characterised by a system of fully coupled quadratic backward stochastic differential equations, a solution to which is proved to exist under Markovian assumptions. We also show that the equilibrium allocations lead to Pareto-optimal allocations only in exceptional situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.