Abstract

Neurological symptoms including lethargy, obtundation, and confusion are early and common findings in patients with sepsis. The etiology of the mental status changes that occur during severe infection is not known. We investigated the effects of sepsis on the levels of high-energy phosphates to determine whether decreased energy metabolism was a factor in the depressed neurological state. The time course of changes in brain pH and brain high-energy phosphate metabolites during an Escherichia coli infusion was determined from sequential phosphorus-31 nuclear magnetic resonance (31P-NMR) spectra of ketamine-xylazine-anesthetized rats. A second group of rats received 0.9% saline infusion and served as a control group. Despite severe obtundation and near loss of righting reflex, the rats in the septic group had no significant differences in the brain pH, the ratio of phosphocreatine (PCr) to beta-adenosine 5'-triphosphate (beta-ATP), or in the ratio of PCr to Pi. The only significant decrease in brain high-energy phosphates or pH occurred terminally in the septic rat group and corresponded with a rapidly falling arterial blood pressure. We conclude that the severe neurological depression that is characteristic of sepsis is not due to decreased levels of brain high-energy phosphates or brain acidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.