Abstract
Adaptation in the sensory-mechanical loop during locomotion is a powerful mechanism that allows organisms to survive in different conditions and environments. Motile animals need to alter motion patterns in different environments. For example, crocodiles and other animals can walk on solid ground but switch to swimming in water beds. The nematode Caenorhabditis elegans also shows adaptability by employing thrashing behaviour in low viscosity media and crawling in high viscosity media. The mechanism that enables this adaptability is an active area of research. It has been attributed previously to neuro-modulation by dopamine and serotonin. This study introduces an experimental assay to physiologically investigate the neuronal mechanisms of modulation of locomotion by dopamine. The technique is utilized to test gait switching while imaging the mechanosensory dopaminergic neurons PDE. Results revealed their role to be not limited to touch sensation, but to sensing surrounding environment resistance as well. The significance of such characterization is improving our understanding of dopamine gait switching which gets impaired in Parkinson's disease.-A locomotion pattern switching system was devised to allow studying this process in vivo in the nematode C. elegans.-This system allowed the study of dopaminergic neurons PDE response as the worms switched from crawling to swimming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.