Abstract
Globally, doxorubicin (DOX)-induced cardio dysfunction is a serious cause of morbidity and mortality in cancerous patients. An adverse event of cardiotoxicity is the main deem to restrict in the clinical application by oncologists. Corilagin (CN) is well known for its antioxidative, anti-fibrosis, and anticancer effects. Herein, we aimed to evaluate the action of CN on DOX-induced experimental animals and H9c2 cells. The myocardium-specific marker, CK-MB, and the influx of mitochondrial calcium levels were measured by using commercial kits. Biochemical indices reflecting oxidative stress and antioxidant attributes such as malondialdehyde, glutathione peroxidase, reduced glutathione, superoxide dismutase, and catalase were also analyzed in DOX-induced cardiotoxicanimals. In addition, mitochondrial ROS were measured by DCFH-DA in H9c2 cells under fluorescence microscopy. DOX induction significantly increased oxidative stress levels and also modulated apoptosis/survival protein expressions in myocardial tissues. Western blots were used to measure the expressional levels of Bax/Bcl-2, caspase-3, PI3-K/AKT, and PPARγ signaling pathways. Histological studies were executed to observe morphological changes in myocardial tissues. All of these DOX-induced effects were attenuated by CN (100 mg/kg bw). These in vitro and in vivo results point towards the fact that CN might be a novel cardioprotective agent against DOX-induced cardiotoxicity through modulating cardio apoptosis and oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.