Abstract

Male reproductive capacity has fallen considerably in recent decades; in addition, the incidence of testicular cancer has increased in many developed countries. The cause of this phenomenon is unknown, but environmental toxicants are considered a major contributing factor. To study potential reproductive toxicants, robust in vitro testis models are needed. We have recently established a porcine testis organoid system with a high resemblance to the architectures of innate testis tissue. Here, we further investigated the testis morphogenesis, cell maturation, and endocrine function of the testis organoids. We also challenged this system with abiraterone, a steroidogenic inhibitor, to validate its suitability as an in vitro platform for endocrine toxicology tests. Our results showed that the testis cells in the organoids reorganize into testis cordal structures, and the cordal relative areas increase in the organoids over time of culture. Moreover, the diameters and cell numbers per cross-section of the cordal structures increased over time. Interestingly, Sertoli cells in the organoids gradually underwent maturational changes by showing increased expression of androgen receptors, decreased expression of the anti-müllerian hormone, and formation of the blood-testis barrier. Next, we confirmed that the organoids respond to hormonal stimulation and release multiple sex hormones, including testosterone, estradiol, and progesterone. Finally, we showed that the production of testosterone and estradiol in this system can be inhibited in response to the steroidogenic inhibitor. Taken together, our organoid system provides a promising in vitro platform for male reproductive toxicology studies on testis morphogenesis, somatic cell maturation, and endocrine production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.