Abstract

Several implant planning software programs are widely use in implant treatments, but there has been no evidence of how different software programs affect the accuracy of static surgical guides used for implant placement. Thus, in this in vitro study, we aimed to compare the accuracy of static surgical guides that were prefabricated from three different software programs, including Implant Studio (Program A) (3Shape®, Copenhagen, Denmark), coDiagnostiX® (Program B) (Straumann®, Basal, Switzerland), and Blue Sky Plan (Program C) (Blue Sky Bio®, LLC, Libertyville, IL, USA). A total of 90 drillable polyurethane models were used as samples in this in vitro study; 30 study models were used to plan the same implant positions and design the surgical guides by each software program (n = 30) and then 90 implants were placed in the models using the surgical guides. The outcomes of the surgical guide accuracy were autonomically measured by the evaluation tool in the coDiagnostiX® (Straumann®, Basal, Switzerland) software program. The deviations between the planned and placed implants were automatically evaluated as three-dimensional and angular deviations. The mean three-dimensional implant position deviations from the implant platform of Program A, Program B, and Program C were 0.55 ± 0.25 mm, 0.52 ± 0.31 mm, and 0.56 ± 0.22 mm, respectively. The mean three-dimensional implant position deviations from the implant apex of Program A, Program B, and Program C were 0.72 ± 0.37 mm, 0.73 ± 0.4 mm, and 0.9 ± 0.46 mm, respectively. The mean depth deviations of Program A, Program B, and Program C were 0.19 ± 0.13 mm, 0.31 ± 0.32 mm, and 0.31 ± 0.22 mm, respectively. The mean angulation deviations of Program A, Program B, and Program C were 1.72 ± 0.88 degrees, 2.05 ± 1.24 degrees, and 2.74 ± 1.81 degrees, respectively. The results indicated that there were no significant differences among the three-dimensional positions at the implant platform, the three-dimensional positions at the implant apex, and the depth deviations between all three groups. However, it was found that there was a significant difference in the angular deviation of the implant position between the three groups (p = 0.02). The mean angular deviation of Program C was significantly greater than the Program A group (p = 0.001). In terms of the deviation directions of the implant platform and implant apex for the three groups, most of the deviations of a larger magnitude were toward the mesio-buccal direction. No matter which program was used to plan the implant position, deviations between the placed implant position and the planned position still occurred. Therefore, when planning implant positions with any implant planning software program, one must take into account an implant position deviation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call