Abstract

Dental pulp stem cells (DPSCs) have been recommended as promising candidate for cell-based therapeutic applications due to high potentials in tissue repair/regeneration and modulation of immune responses. The gene expression change strategy by natural plant enhancers is an available opportunity to improve the stemness properties of these cells. The objective of this research was the evaluation of Crocin effects (saffron plant's bioactive compound) on immunoregulation and tissue regeneration-related biomarkers expression in human DPSCs. Based on the results of cell viability assay, application of 400 μM and lower concentrations of Crocin had no toxic effects on DPSCs; however, the time-dependent cytotoxic effects were observed at higher concentrations. This study, probably for the first time, detected the surface expression of CD200 in DPSCs with a slight time-dependent upward trend and reported that treatment with Crocin could increase expression of this macromolecule up to many times over. Also, it revealed that this carotenoid significantly led to the time-dependent upregulation of dentin sialophosphoprotein, vascular endothelial growth factor A, human leukocyte antigen-G5, and signal transducer and activator of transcription-3 messenger ribonucleic acids (mRNAs); however, this significant upregulation for STAT3 occurred, followed by a remarkable reduction. The results of this study indicated that cell treatment with Crocin may be effective in improving the stemness capacities of DPSCs. Therefore, the study provided basis for more insights into the biological effects of Crocin on DPSCs that it may aid in the future improvement of mesenchymal stem cell-based therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call