Abstract

To evaluate chemicals (e.g. lipophilic chemicals, pre/pro-haptens) that are difficult to correctly evaluate using in vitro skin sensitization tests (e.g. DPRA, KeratinoSens or h-CLAT), we developed a novel in vitro test termed “Epidermal Sensitization Assay: EpiSensA” that uses reconstructed human epidermis. This assay is based on the induction of multiple marker genes (ATF3, IL-8, DNAJB4 and GCLM) related to two keratinocyte responses (inflammatory or cytoprotective) in the induction of skin sensitization. Here, we first confirmed the mechanistic relevance of these marker genes by focusing on key molecules that regulate keratinocyte responses in vivo (P2X7 for inflammatory and Nrf2 for cytoprotective responses). The up-regulation of ATF3 and IL-8, or DNAJB4 and GCLM induced by the representative sensitizer 2,4-dinitrochlorobenzene in human keratinocytes was significantly suppressed by a P2X7 specific antagonist KN-62, or by Nrf2 siRNA, respectively, which supported mechanistic relevance of marker genes. Moreover, the EpiSensA had sensitivity, specificity and accuracy of 93%, 100% and 93% for 29 lipophilic chemicals (logKow≥3.5), and of 96%, 75% and 88% for 43 hydrophilic chemicals including 11 pre/pro-haptens, compared with the LLNA. These results suggested that the EpiSensA could be a mechanism-based test applicable to broad sets of chemicals including lipophilic chemicals and pre/pro-haptens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.