Abstract

An in vitro method, based on 113Cd-NMR spectroscopy, that provides an alternative to the use of animals for an initial screening of cadmium antagonists is presented. The relative values of the effective stability constants of potential chelating antagonists for cadmium are estimated by using 113Cd-NMR spectroscopy to determine the concentrations of the cadmium species involved in appropriate competitive equilibria. This is accomplished via an examination of the competition between the proposed antagonist and EDTA (ethylenediaminetetraacetic acid) for cadmium-113; previously, EDTA has been shown to be capable of removing cadmium from such in vivo binding sites as metallothionein. The reactions proceed via the stepwise addition of three dithiocarbamate groups to the cadmium accompanied by the concurrent stepwise release of donor groups from the EDTA. The resulting 113Cd-NMR data allow for the determination of the overall stability constant for the complex formed between cadmium and N-methyl-D-glucamine dithiocarbamate, iminodiacetic acid dithiocarbamate, proline dithiocarbamate, sarcosine dithiocarbamate. The use of 113Cd-NMR spectroscopy has the potential for providing direct evidence on the effectiveness of chelate antagonists to compete with endogenous ligands for other toxic metal ions. This technique could prove very useful for other compounds that are not stable enough toward acid and/or base to be examined by standard titrimetric methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.