Abstract

This paper describes evidence that an extracellular matrix (ECM) secreted by human umbilical vein endothelial cells (HUVECs) assembled on gelatin coated plates overlaid by a mixed matrix secreted by human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts provides a viable acellular scaffold for use in wound healing. Trypsinized epidermal keratinocytes or colonies from Dispase-digested fresh and cadaver skin tissue adhered and proliferated on either HUVECs ECM/gelatin or mixed matrix overlaid on HUVECs ECM/gelatin. An epithelial-mesenchymal interaction, previously thought to be tissue-specific, was exposed as well as concomitant integrin versatility. Furthermore, heterologous HDMECs and dermal fibroblasts attached and proliferated on the mixed matrix as well as HUVECs ECM. The conditioned medium from HUVECs (HUVECs CM) was found to neutralize the lingering after effects of Dispase, and could be used for the tissue culture of epidermal keratinocytes, HDMECs and dermal fibroblasts, which share related extracellular secretions. Taken together, these results indicate that cultured epithelial autografts can be redesigned to include both epithelial and dermal elements, and advances the acellular 'sandwich' ECM scaffold as a possible structural replacement for the lamina densa and lamina lucida, damaged or completely missing in some wounds and burns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call