Abstract

In this study, we first investigated the in vitro degradation properties of biodegradable, bioresorbable polycaprolactone–20% tricalcium phosphate (PCL–TCP) composites immersed in simulated body fluid (SBF) and phosphate buffered saline (PBS). Then, the release profiles of the growth factors present in platelet-rich plasma (PRP) loaded onto the composites incubated in SBF and PBS were compared. Composites immersed in both buffers showed water uptake of 13.7% ± 0.75 at day 1, followed by a constant uptake of 12.1% ± 0.3 until day 12. Henceforth the water uptake declined for SBF- and increased for PBS-soaked composites. The weight loss data did not reveal any trend. SBF- and PBS-soaked samples displayed 1–2% weight loss for 2 and 5 of the ten time points measured respectively. The original protein retention (PR) of the composites was 49.1% ± 1.50. After immersion in SBF and PBS for 4 weeks, the PR was augmented to 88.5% ± 1.40 and 69.1% ± 1.40 correspondingly. PRP after activation contained 164.7 ± 24.8, 194 ± 43 and 18.3 ± 4.75 ng/ml of TGF-β1, PDGF-BB and IGF-1. Microscopic analysis verified the attachment of PRP to the rods and pores of the composites. Interestingly, the buffers played an important role in determining the release profiles of TGF and PDGF. Firstly, PBS-soaked composites manifested a tri-phasic burst-like profile that was absent in SBF. Secondly, SBF-soaked composites experienced delayed release of the growth factors and total release was not achieved (64.4% for TGF and 60.5% for PDGF), whereas total release was realized for PBS-soaked composites. Lastly, release profiles from SBF-soaked composites were growth factor mediated in terms of their amounts and sizes. This was not observed for PBS-soaked composites. IGF-1, on the other hand, exhibited a progressive reduction in levels over the entire experimental period for both buffers. The mechanisms of release were theorized to be a combination of diffusion, degradation and bioactivity. Since SBF is analogous to our body fluids in terms of its ionic constituents, we expect the elution profiles derived from SBF-soaked samples to more accurately emulate the in vivo situation. In conclusion, this study has deemed PCL–TCP composites as suitable delivery systems for platelet-rich plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.