Abstract

The acidic microenvironment of tumour cells requires a pH-sensitive delivery mechanism for improving drug release. In this study, we investigated the feasibility of using pH-sensitive ACC nanoparticles with sustained-release performance and slow degradability as carriers for lectins isolated from edible mushroom Agaricus bisporus (ABL) that exhibited anti-proliferating effects on tumour cells. ABL was purified and characterized using ion-exchange, gel filtration chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. ABL-ACC nanoparticles were synthesized through a simple precipitation process coupled with mechanical grinding. The conjugated ABL-ACC-NPs were characterized using Fourier-transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscope, transmission electron microscope and zeta potential. Cytotoxicity of ABL-ACC-NPs was analyzed using methylthiazol tetrazolium assay against MCF-7 cells compared with ABL and ACC-NPs. The results indicated biostability of ACC-NPs and low toxicity toward MCF-7 cells, and induced increased reduction in MCF-7 viability compared with ABL. ABL-ACC-NPs-FITC showed fully internalization and accumulation inside the nucleus comparing with ABL-FITC which showed only accumulation around the nuclear envelope. Inclusively, conjugation of ABL with ACC-NPs has improved its cytotoxicity, enhanced its bioavailability, internalization into the tumour cells, accumulation in cell organelles which may promote cell responses and subsequently triggered cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call