Abstract
Recent studies have shown that opioid peptide levels are altered in hippocampal formation of kindled animals. We therefore studied the distributions of mu and delta opioid binding sites in hippocampal formation of kindled and control rats using quantitative in vitro autoradiography. Animals received daily stimulations of the amygdala until they experienced 3 class 5 seizures. Paired control animals underwent implantation of electrodes but were not stimulated. Mu binding sites were labeled with 125I-FK-33824. Twenty-four hours after the last kindled seizure, mu binding was decreased by 32% in stratum pyramidale of CA 1 and stratum radiatum of CA 2 and by 17–27% throughout most of the rest of CA 1, CA 2 and CA 3. Few, if any, differences were seen between kindled and control animals at 7 or 28 days after the last kindled seizure. Delta binding sites were labeled with 125I-[ d-Ala 2, d-Leu 5]enkephalin in the presence of the morphiceptin analog PL-032. Twenty-four hours after the last kindled seizure, delta binding was decreased only in stratum moleculare of the dentate gyrus. Seven days after the last kindled seizure, delta binding was decreased by 11–17% throughout CA 1, CA 3, and the dentate gyrus. At 28 days after the last seizure, however, no differences were found between kindled and control animals. Since the decreases in mu and delta opioid binding are transient, they are unlikely to be the molecular basis of the permanent kindling phenomenon. Rather, these changes in opioid binding may represent responses to repeated seizures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.