Abstract

Ever since regulatory changes introduced herbals into mainstream supermarkets and pharmacies, there has been an explosion of demand for herbal plants and extracts which can be used to improve human health and well being. Science still lacks a basic mechanistic understanding of how environmental triggers regulate phytochemical accumulation, but this gap can be bridged using in vitro models to examine herbal species responses. For St. John's wort (Hypericum perforatum), uniform in vitro shoot cultures were set up as a parallel to a previously established sand culture system for investigation of physical and chemical environmental factors that control hypericin accumulation. Cytokinin supplementation of shoot culture medium resulted in a proliferation of abundant leaf glands with enhanced levels of hypericin, as compared to controls. Cell cultures of echinacea (Echinacea angustifolia) were established, and hydrophilic pharmacological components (caffeic acid derivatives) were detected. A protocol of rigorous explant pretreatment, and use of newly emerging vegetative shoots permitted establishment of axenic kava (Piper methysticum) callus, which was used to regenerate roots (organogenesis). Kavapyrone synthesis was achieved in both undifferentiated cell cultures and in cultured roots, although at lower levels than found in in vivo root systems. The predominance of kavain and methysticin in both forms of the in vitro cultures was parallel to the relative proportions from kava roots in vivo. The cell and organ cultures of all three herbal medicinals provide advantageous, easily-manipulated models to decipher environmental controls of phytochemical biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call