Abstract
Alveolar type II (ATII) epithelial cells contain lamellar bodies (LBs) which synthesize and store lung surfactants. In animals, the inhibition or knockout of leucine-rich repeat kinase 2 (LRRK2) causes abnormal enlargement of LBs in ATII cells. This effect of LRRK2 inhibition in lung is largely accepted as being mediated directly through blocking of the kinase function; however, downstream consequences in the lung remain unknown. In this work we established an in vitro alveolar epithelial cell (AEC) model that recapitulates the in vivo phenotype of ATII cells and developed an assay to quantify changes in LB size in response to LRRK2 inhibitors. Culture of primary human AECs at the air-liquid interface on matrigel and collagen-coated transwell inserts in the presence of growth factors promoted the LB formation and apical microvilli and induced expression of LRRK2 and ATII cell markers. Treatment with a selective LRRK2 inhibitor resulted in pharmacological reduction of phospho-LRRK2 and a significant increase in LB size; effects previously reported in lungs of non-human primates treated with LRRK2 inhibitor. In summary, our human in vitro AEC model recapitulates the abnormal lung findings observed in LRRK2-perturbed animals and holds the potential for expanding current understanding of LRRK2 function in the lung.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.