Abstract
In vehicle navigation scenarios, the RTK positioning results of smartphones are prone to jumps due to the interference of complex urban environments, and the heading angle of dead reckoning (DR) is prone to divergence. In order to obtain more stable and high-precision smartphone positioning results, this paper proposes an RTK/DR positioning method combined with the OpenStreetMap road network. The OpenStreetMap road network data are used to correct the heading angle during the linear motion phase to improve heading angle accuracy. In order to reduce the impact of RTK results jumping on subsequent DR, it is possible to set up a measurement update switch, which combines the RTK covariance matrix, vehicle motion state, and RTK heading angle change information to determine whether to perform a measurement update. The research uses two smartphones to carry out four vehicle positioning tests. The eight sets of test results show that the heading angle correction method based on the OpenStreetMap road network can effectively control the accumulation of heading angle errors and allow DR trajectory to be more consistent with the benchmark. Compared with RTK, the forward accuracy of RTK/DR positioning method is almost unchanged, even though the direction accuracy and lateral positioning accuracy are significantly improved. The RTK/DR horizontal positioning accuracy of both smartphones is approximately 1.3 m, which is better rather than the RTK results. The proposed RTK/DR positioning method can obtain more reliable orientation and position information than RTK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.