Abstract
An in-source, helical membrane inlet single photon ionization time-of-flight mass spectrometry (SPI-TOFMS) has been developed to improve the detection sensitivity of trace volatile organic compounds (VOCs) in water. A helical winding membrane and a four-stage differential pumping system of TOFMS was designed to improve and maintain the vapor pressure of analyte, which is linearly associated with the sensitivity of SPI. The helical winding increased the length of the hollow fiber membrane (HFM) from 7 cm to 100 cm and the pressure inside of SPI source was elevated from 3.6 Pa to 28 Pa, and then the sensitivity was increased by 16, 34.7, 32.3, 17.9 and 13.9 times for benzene, ethyl tert-butyl ether (ETBE), aniline, p-xylene, and chlorobenzene (MCBz) respectively. The limits of quantitation (LOQs) of benzene, ETBE, aniline, p-xylene and MCBz were 0.014, 0.143, 0.556, 0.036, 0.025 μg L−1 respectively with a measurement time of 50 s, which were enhanced by more than one order of magnitude compared to our previous work (reference [32]). The in-source design of helical winding membrane i.e. putting the membrane inside the SPI source dramatically reduced the response time to 1.33 min. This system has been evaluated for VOCs in sewage water of different laboratory buildings and automatic monitoring the pollutants in sewage water from a biological laboratory building. The automatic continuous analysis of organic pollutants in water has very important significance and broad application prospect for online assessment of water quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.